
ORIGINAL PAPER

Evaluation of genome-wide selection efficiency in maize nested
association mapping populations

Zhigang Guo • Dominic M. Tucker •

Jianwei Lu • Venkata Kishore • Gilles Gay

Received: 1 March 2011 / Accepted: 7 September 2011 / Published online: 22 September 2011

� Springer-Verlag 2011

Abstract In comparison to conventional marker-assisted

selection (MAS), which utilizes only a subset of genetic

markers associated with a trait to predict breeding values

(BVs), genome-wide selection (GWS) improves prediction

accuracies by incorporating all markers into a model

simultaneously. This strategy avoids risks of missing

quantitative trait loci (QTL) with small effects. Here, we

evaluated the accuracy of prediction for three corn flow-

ering traits days to silking, days to anthesis, and anthesis-

silking interval with GWS based on cross-validation

experiments using a large data set of 25 nested association

mapping populations in maize (Zea mays). We found that

GWS via ridge regression-best linear unbiased prediction

(RR-BLUP) gave significantly higher predictions com-

pared to MAS utilizing composite interval mapping (CIM).

The CIM method may be selected over multiple linear

regression to decrease over-estimations of the efficiency of

GWS over a MAS strategy. The RR-BLUP method was the

preferred method for estimating marker effects in GWS

with prediction accuracies comparable to or greater than

BayesA and BayesB. The accuracy with RR-BLUP

increased with training sample proportion, marker density,

and heritability until it reached a plateau. In general, gains

in accuracy with RR-BLUP over CIM increased with

decreases of these factors. Compared to training sample

proportion, the accuracy of prediction with RR-BLUP was

relatively insensitive to marker density.

Abbreviations

ASI Anthesis silking interval

BV Breeding value

CIM Composition interval mapping

DA Day till anthesis

DS Days till silking

GWS Genome-wide selection

ICE Iterative conditional expectation

LOD Logarithm of odds

MAS Marker-assisted selection

MLR Multiple linear regression

MCMC Monte Carlo Markov chain

NAM Nested association mapping

QTL Quantitative trait loci

RIL Recombinant inbred line

RR-BLUP Ridge regression-best linear unbiased

prediction

SNP Single nucleotide polymorphisms

Introduction

Genome-wide selection (GWS) has been proposed as a

method for increasing genetic gain for quantitative traits in

animal and plant breeding (Meuwissen et al. 2001; Ber-

nardo and Yu 2007; Habier et al. 2007; Hayes et al. 2009;

Heffner et al. 2009; Jannink et al. 2010). Conventional

marker-assisted selection (MAS) exploits only a subset of

markers identified by least-squares procedures such as

multiple linear regression (MLR) (Lande and Thompson

1990; Meuwissen et al. 2001; Lorenzana and Bernardo
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2009). In contrast, GWS incorporates all markers across the

entire genome into a prediction model simultaneously,

reducing the risk of missing or inaccurately considering

quantitative trait loci (QTL) with lesser effects. Each

marker is generally considered as a putative QTL and all

the markers are combined to predict breeding values (BVs)

of progeny with the GWS method.

In animal breeding, extensive simulations and empirical

studies have been performed to verify advantages of GWS

over MAS. The first simulation study was conducted by

Meuwissen et al. (2001). In the study, three methods: ridge

regression-best linear unbiased prediction (RR-BLUP),

BayesA, and BayesB were proposed to estimate effects of

each marker in GWS. Following, performances of each

method were compared with MAS. The authors found that

GWS significantly improved the accuracy of predicted

BVs. Increases of 130% with RR-BLUP, 151% with Ba-

yesA, and 167% with BayesB, respectively, were reported

over MAS. In a separate study, an empirical analysis in

mice concluded that the prediction accuracies of GWS

were 3–22% improvement over conventional methods,

depending on the trait (Legarra et al. 2008). Recently,

results in dairy cattle from Australia, New Zealand, United

States, and the Netherlands showed that the average reli-

ability of genetic prediction of GWS was 85% higher than

that of conventional parent averages (Hayes et al. 2009).

Progresses in animal breeding have stimulated the

development of GWS in plant breeding. Differing from

outcrossing schemes in animal breeding, the focus of GWS

in plant breeding has been on bi-parental breeding popu-

lations. Bernardo and Yu (2007) first performed simula-

tions on maize (Zea mays) that compared the efficiency of

GWS versus MAS. They concluded that the selection

responses due to GWS via RR-BLUP were 18–43% greater

than that due to MAS via MLR. The advantage of GWS

increased with decreases in heritability. Similar results

were reported when marker intervals or haplotypes, rather

than individual markers, were used as predictor variables

for GWS (Piyasatian et al. 2007). Thus far, only one

empirical study was performed by Lorenzana and Bernardo

(2009) that concluded predictions were more accurate with

RR-BLUP in comparison to MLR. In addition, RR-BLUP

was the method of choice for GWS strategies as it pro-

duced improved or comparable prediction accuracies

compared to empirical Bayesian methods (Xu 2003, 2007).

The above empirical evaluation was based only on seven

bi-parental plant populations: four maize, one Arabidopsis

(Arabidopsis thaliana), and two barley (Hordeum vulgare)

populations. Thus, it is necessary to verify genetic gains of

GWS using a larger number of bi-parental populations.

Secondly, in previous studies, GWS was compared to MLR

methods (Meuwissen et al. 2001; Bernardo and Yu 2007;

Lorenzana and Bernardo 2009). The MLR method serves

as an adequate control method in association mapping, but

may not be an appropriate control method for linkage mapping

in bi-parental populations. In practice, the most widely uti-

lized mapping method has been composite interval mapping

(CIM, Zeng 1993, 1994) for this type of population, which has

provided improved power and precision estimates of QTL

positions and effects over MLR (Jansen 1993; Zeng 1993).

Thus, the predictive advantages of GWS over MAS may be

over-estimated if MLR is used as a control in bi-parental

populations, rather than CIM. In addition, the influence of

heritability on the genetic gain with GWS over MAS has not

been determined using an empirical study in breeding popu-

lations. Finally, the combined effect of training sample sizes

and marker densities on GWS needs to be carefully investi-

gated in further studies.

Our objectives therefore were to: (1) evaluate the perfor-

mance of GWS over MAS using CIM as a control in a large

data set consisting of 25 bi-parental populations, (2) compare

RR-BLUP with other Bayesian methods (BayesA and Ba-

yesB, Meuwissen et al. 2001) for estimating marker effects for

GWS, and (3) determine effects of training sample proportion,

marker density, and heritability on the accuracy of GWS

prediction. The data used in the study was from a recent QTL

mapping study of flowering time in maize (Buckler et al.

2009). A total of 4,699 recombinant inbred lines (RILs) were

from 25 nested association mapping (NAM) populations

containing 1,106 single nucleotide polymorphism (SNP)

markers per RIL. Three flowering traits were chosen for

analysis: days to silking (DS, female flowering), days to

anthesis (DA, male flowering), and anthesis-silking interval

(ASI). These traits are known to be controlled by numerous

QTL with small effects (Buckler et al. 2009) that is particu-

larly suitable for a GWS study (Bernardo and Yu 2007).

Materials and methods

NAM Populations

Phenotype and genotype data from 25 maize NAM populations

were obtained from the Panzea website (http://www.panzea.

org), a project aimed at investigating the genetic architecture of

maize and teosinte (Z. teosinte). A total of 4,699 RILs were

obtained from 25 bi-parental crosses between genetically

diverse lines and B73 (Table 1). Genotypic data from 1,106

SNP markers covered a genetic map of 1,439 cM. On average,

the size of an interval flanked by two adjacent markers in each

NAM populations were*1.6 cM, indicating an extensive and

dense coverage of the maize genome. For individual popula-

tions, numbers of polymorphic SNPs varied from 785 to 895

while genome size ranged from 1,371 to 1,397 cM. This

indicated that the genomic coverage for individual populations

was very close, even with different numbers of markers. Each
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RIL was evaluated for DS, DA, and ASI at four locations over

2 years, and phenotypic means of each line were used for our

data analysis for simplicity (Buckler et al. 2009).

Cross-validation

Each NAM population, referred to as biparental popula-

tions in the current study, was randomly split into a training

data set of four-fifths progenies and a validation data set of

one fifth progenies (Legarra et al. 2008; Lorenzana and

Bernardo 2009). Marker effects estimated from the training

data set were used to predict the BVs of RILs in the vali-

dation set based on SNP genotype data only. The accuracy

of prediction was defined as the square of correlation

coefficient between predicted BVs and observed pheno-

types for flowering traits in the validation sample.

Methods Used for QTL Identification in MAS

The MLR and CIM methods were used for the MAS

strategy. Markers near QTL were first identified using

stepwise regression based on a given significance level a,

and the effects were estimated by multiple regression with

MLR (Bernardo and Yu 2007; Lorenzana and Bernardo

2009). The CIM method was performed based on the

additive genetic model

yi ¼ lþ qiaþ
X

xijbj þ ei

where yi is the phenotype of individual i in a NAM pop-

ulation, l the overall mean of the phenotype, qi the geno-

type of the putative QTL, a the additive effect of the QTL,

xij the genotype of the cofactor marker j of individual i, bj

the effect of marker j, and ei residual error following a

normal distribution N(0, re
2). QTL genotype qi was not

observed and was replaced in the model with its expecta-

tion, calculated from the probability distribution of QTL

genotypes that was conditional on the closest flanking

markers (Haley and Knott 1992). Missing the xij genotype

data was similarly imputed. Cofactors in the model were

selected by stepwise regression. The effects of QTL iden-

tified by CIM were estimated by multiple regression based

on their conditional expectations (Utz et al. 2000).

Table 1 Population

information and genomic

coverage regarding the 25

nested association mapping

populations (NAM) used in the

current study

Heritability estimates for days

to silking (DS), days to anthesis

(DA) and anthesis-silking

interval (ASI) were calculated

by Buckler et al. (2009) and are

also indicated in the table

Index Crosses Sample size Marker number Genomic

coverage (cM)

Heritability (H2)

DS DA ASI

1 B73 9 B97 194 816 1,386 0.77 0.77 0.64

2 B73 9 CML103 196 830 1,396 0.73 0.78 0.61

3 B73 9 CML228 191 895 1,396 0.89 0.90 0.68

4 B73 9 CML247 196 852 1,397 0.89 0.90 0.75

5 B73 9 CML277 187 834 1,385 0.91 0.92 0.71

6 B73 9 CML322 185 848 1,394 0.83 0.84 0.72

7 B73 9 CML333 193 838 1,388 0.82 0.84 0.61

8 B73 9 CML52 196 853 1,390 0.89 0.88 0.68

9 B73 9 CML69 189 849 1,389 0.80 0.82 0.67

10 B73 9 Hp301 192 806 1,387 0.85 0.83 0.67

11 B73 9 Il14H 194 846 1,389 0.86 0.84 0.61

12 B73 9 Ki11 193 836 1,386 0.91 0.90 0.69

13 B73 9 Ki3 126 809 1,397 0.85 0.84 0.67

14 B73 9 Ky21 196 820 1,395 0.81 0.75 0.66

15 B73 9 M162 W 185 841 1,378 0.83 0.82 0.69

16 B73 9 M37 W 194 804 1,389 0.83 0.83 0.65

17 B73 9 Mo18 W 192 825 1,386 0.90 0.88 0.81

18 B73 9 MS71 196 785 1,371 0.76 0.70 0.63

19 B73 9 NC350 188 838 1,388 0.84 0.83 0.71

20 B73 9 NC358 184 825 1,396 0.79 0.75 0.58

21 B73 9 Oh43 193 824 1,389 0.81 0.71 0.71

22 B73 9 Oh7B 181 796 1,396 0.80 0.81 0.71

23 B73 9 P39 183 841 1,378 0.86 0.87 0.62

24 B73 9 Tx303 188 815 1,394 0.88 0.85 0.80

25 B73 9 Tzi8 187 860 1,381 0.89 0.87 0.81

Average 188 831 1,389 0.84 0.83 0.68
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Methods used for estimating marker effects in GWS

The genetic model for GWS was same as the one used by

Bernardo and Yu (2007), written as

yi ¼ lþ
X

zijuj þ ei

where yi was the phenotype of individual i in a NAM

population, l the overall mean of the phenotype, zij the

genotype of the marker j of individual i with j ¼ 1; 2; . . .;M

where M was the total number of markers, uj the additive

effect of marker j, and ei residual error following a normal

distribution N(0, re
2). The key in the model was to

simultaneously estimate effects of genome-wide markers.

To do so, three methods: (1) RR-BLUP, (2) BayesA, and (3)

BayesB were used to calculate uj in the study, respectively. In

RR-BLUP, each marker was assumed to have an equal

genetic variance and the effects of markers were calculated

by solving Henderson mixed model equation (Henderson

1984). In BayesA, it was assumed that uj * N (0, rgj
2 ) where

rgj
2 was the genetic variance modeled by an inverted chi-

square distribution v-2(v, S) with v the degrees of freedom

and S the scale parameter. Markers effects were estimated by

the Monte Carlo Markov Chain (MCMC) using Gibbs

sampling as proposed by Meuwissen et al. (2001). BayesB

was actually an extension of BayesA by sampling the marker

effect uj as uj = 0 with probability r and uj * N (0, rgj
2 )

where rgj
2 * v-2(v, S) with probability 1 - r where r was

the prior probability that a marker was not a QTL

(Meuwissen et al. 2001). The difficulty in the BayesB

method was that the posterior distribution of uj cannot be

expressed in the closed form of a known distribution. This

problem was solved by using Metropolis-Hasting sampling.

This significantly increased the computational time. To

overcome computational time issues, we applied a more

efficient algorithm of BayesB based on an iterative

conditional expectation (ICE) algorithm (Meuwiseen et al.

2009). The BV of each line in a validation sample were

predicted as

ŷi ¼ lþ
X

zijuj

� �

where ŷi is the BV of individual i in the sample and l and uj

were estimated from a training sample using methods

described above. In GWS, all markers were needed to

predict BVs of lines in the sample, while only a subset of

markers and QTL were used for prediction in MLR and

CIM in MAS. The genotype zij was replaced by the con-

ditional expectation of a QTL for CIM.

Data analysis

A total of 100 replicates of cross-validations were

performed to evaluate the performances of MLR, CIM,

RR-BLUP, BayesA, and BayesB across the 25 NAM

populations. At each replicate, a whole NAM population

was randomly split into a training sample (four fifth pop-

ulation size) and a validation sample (one fifth population

size). It must be noted that the proportion of a training

sample varied at different levels when we investigated the

effect of training sample proportion on GWS. Marker

effects were first estimated by proposed methods based on

phenotypic and genotypic data in the training sample.

The significance level was chosen to be a = 0.001, 0.01,

0.05, 0.10, and 0.20 for stepwise selection in MLR. The

first level a = 0.001 was obtained by permutation tests

(Buckler et al. 2009), and the last one a = 0.20 was

determined by our preliminary experiment. In this pre-

liminary experiment, less stringent significance levels were

applied, for example, a = 0.30 and a = 0.40 as suggested

by Bernardo and Yu (2007). However, often numbers of

markers significantly associated with flowering traits

exceeded the number of RILs in individual NAM popula-

tions, causing the over-fitting of the general least-square

model in this strategy. Therefore, it was determined

a = 0.20 was the lowest significance level of a to avoid

this issue. With a given a, a marker was allowed to enter

the model when its p value was less than the level. Fol-

lowing, the model was then re-evaluated. Markers with p

values greater than a were dropped. This process was

repeated until the next marker added had a p-value greater

than a.

With CIM, cofactors were selected by stepwise selection

as demonstrated above in MLR (a = 0.05) with a cofactor

window size of 10 cM. The whole genome was scanned by

a fixed step size of 1 cM. A QTL was identified at the

position where the logarithm of odds (LODs) score

assumed its maximum in the region under consideration

with a LOD threshold of 2.5 (Utz et al. 2000).

For RR-BLUP, the genetic variance Vg and environ-

mental variance Ve were estimated based on heritabilities

H2 of traits (Table 1) and phenotypic variances Vt as

Vg = H2Vt and Ve = Vt - Vg. For each marker, the genetic

variance was calculated as rgj
2 = Vg/2

P
pk (1 - pk) with pk

was the allele frequency at marker locus k (k ¼ 1; 2; . . .;M)

where M was the total number of markers (Habier et al.

2007). Given the equivalent genetic variance, effects of

each marker were then calculated by solving the Henderson

mixed model equation (Henderson 1984).

For BayesA, a total of 10,000 MCMC iterations were

run with the first 2,000 iterations discarded for burn-in. The

remaining 8,000 iterations were used to estimate marker

effects. In addition, we performed a preliminary analysis

for DS in NAM population 1 to verify the accuracy

obtained from five independent BayesA analyses. This

accuracy calculation result was actually negligible (data

not shown). Therefore, the number of iterations used in the
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BayesA method was sufficient to guarantee the stability of

accuracy of prediction and was not highly impacted by

stochastic error in the MCMC. As described in the pre-

ceding section, BayesB was implemented as the ICE

algorithm (Meuwiseen et al. 2009) which needed the prior

probability (r) that a marker was not associated with a

QTL. The prior was calculated as r = (M - Nq)/M with Nq

the number of significant markers associated with traits of

interest by stepwise selection conditional on a = 0.05. The

iterative BayesB calculation was stopped until changes of

marker effect estimates between current and last iterations

were small, less than 10-6.

The BVs of RILs in the validation sample were then

predicted by summing all marker effects. R2 were then

calculated with R the correlation coefficient between pre-

dicted BVs and observed phenotypes in the validation

sample. Prediction accuracies for each method were actu-

ally calculated as rBV:P
2 , which was the average of R2 across

Table 2 Prediction accuracy with MLR, CIM, RR-BLUP, BayesA and BayesB for DS at training sample proportion 0.8 and marker density

1.6 cM based on 25 NAM populations

Index Crosses MLR

rBV:P
2a

NQTL CIM

rBV:P
2b

NQTL RR-BLUP

rBV:P
2c

NQTL BayesA

rBV:P
2d

NQTL BayesB

rBV:P
2e

NQTL

1 B73 9 B97 0.30 (0.05) 49 0.35 (0.18) 27 0.50 (0.68, 0.43) 816 0.41 (-0.18) 816 0.31 (-0.38) 816

2 B73 9 CML103 0.10 (0.05) 40 0.09 (-0.04) 20 0.27 (1.86, 1.98) 830 0.25 (-0.07) 830 0.11 (-0.60) 830

3 B73 9 CML228 0.35 (0.001) 4 0.34 (-0.01) 29 0.45 (0.31, 0.32) 895 0.50 (0.10) 895 0.45 (-0.01) 895

4 B73 9 CML247 0.38 (0.01) 17 0.41 (0.08) 29 0.55 (0.45, 0.34) 852 0.49 (-0.10) 852 0.47 (-0.14) 852

5 B73 9 CML277 0.47 (0.01) 10 0.44 (-0.07) 24 0.50 (0.08, 0.15) 834 0.52 (0.03) 834 0.56 (0.11) 834

6 B73 9 CML322 0.30 (0.01) 14 0.34 (0.11) 33 0.54 (0.77, 0.60) 848 0.48 (-0.11) 848 0.36 (-0.33) 848

7 B73 9 CML333 0.21 (0.01) 12 0.24 (0.13) 21 0.40 (0.85, 0.64) 838 0.39 (-0.01) 838 0.34 (-0.14) 838

8 B73 9 CML52 0.22 (0.05) 65 0.25 (0.11) 30 0.38 (0.72, 0.54) 853 0.38 (-0.02) 853 0.32 (-0.17) 853

9 B73 9 CML69 0.24 (0.01) 11 0.25 (0.04) 21 0.35 (0.45, 0.39) 849 0.37 (0.08) 849 0.29 (-0.16) 849

10 B73 9 Hp301 0.38 (0.01) 16 0.46 (0.21) 27 0.57 (0.52, 0.26) 806 0.56 (-0.03) 806 0.46 (-0.20) 806

11 B73 9 Il14H 0.36 (0.01) 16 0.42 (0.18) 26 0.53 (0.48, 0.26) 846 0.54 (0.01) 846 0.45 (-0.15) 846

12 B73 9 Ki11 0.46 (0.001) 4 0.44 (-0.04) 23 0.50 (0.09, 0.14) 836 0.57 (0.12) 836 0.55 (0.09) 836

13 B73 9 Ki3 0.31 (0.01) 10 0.29 (-0.08) 46 0.41 (0.32, 0.43) 809 0.45 (0.11) 809 0.41 (0.01) 809

14 B73 9 Ky21 0.34 (0.01) 15 0.38 (0.12) 27 0.54 (0.60, 0.43) 820 0.48 (-0.11) 820 0.36 (-0.33) 820

15 B73 9 M162 W 0.33 (0.001) 4 0.31 (-0.08) 25 0.42 (0.27, 0.37) 841 0.41 (-0.05) 841 0.41 (-0.03) 841

16 B73 9 M37 W 0.33 (0.01) 10 0.33 (0.00) 23 0.43 (0.30, 0.30) 804 0.43 (-0.01) 804 0.36 (-0.17) 804

17 B73 9 Mo18 W 0.39 (0.01) 15 0.44 (0.13) 34 0.56 (0.43, 0.26) 825 0.45 (-0.20) 825 0.47 (-0.16) 825

18 B73 9 MS71 0.19 (0.01) 8 0.22 (0.16) 19 0.32 (0.71, 0.47) 785 0.35 (0.07) 785 0.29 (-0.11) 785

19 B73 9 NC350 0.31 (0.01) 11 0.31 (-0.03) 22 0.37 (0.17, 0.21) 838 0.39 (0.04) 838 0.32 (-0.15) 838

20 B73 9 NC358 0.37 (0.01) 16 0.40 (0.07) 32 0.55 (0.50, 0.40) 825 0.49 (-0.11) 825 0.36 (-0.35) 825

21 B73 9 Oh43 0.24 (0.01) 11 0.28 (0.14) 24 0.32 (0.31, 0.15) 824 0.27 (-0.15) 824 0.21 (-0.34) 824

22 B73 9 Oh7B 0.18 (0.05) 46 0.23 (0.27) 24 0.38 (1.14, 0.68) 796 0.34 (-0.13) 796 0.28 (-0.27) 796

23 B73 9 P39 0.22 (0.05) 48 0.25 (0.12) 25 0.44 (1.01, 0.80) 841 0.35 (-0.20) 841 0.33 (-0.26) 841

24 B73 9 Tx303 0.15 (0.01) 9 0.17 (0.14) 25 0.26 (0.74, 0.53) 815 0.26 (0.02) 815 0.19 (-0.26) 815

25 B73 9 Tzi8 0.27 (0.01) 11 0.28 (0.04) 24 0.29 (0.09, 0.05) 860 0.40 (0.37) 860 0.33 (0.12) 860

Min 0.10 4 0.09 19 0.26 785 0.25 785 0.11 785

Max 0.47 65 0.46 46 0.57 895 0.57 895 0.56 895

Aver 0.30 19 0.32 (0.07) 26 0.43 (0.43, 0.34) 831 0.42 (-0.03) 831 0.36 (-0.16) 831

Bold in parentheses indicates the gain with one method over another one is not significant at a = 0.05

NAM nested association mapping, MLR multiple linear regression, CIM composite interval mapping, RR-BLUP ridge regression-best linear

unbiased prediction, DS days to silking, Min minimum accuracy of prediction across 25 NAM populations, Max maximum accuracy of prediction

across 25 NAM populations, Aver average of accuracy of prediction across 25 NAM populations, NQTL number of QTL
a In parentheses is the significance level which gave the highest rBV:P

2 in MLR
b In parentheses is the gain in accuracy with CIM over with MLR
c The first value in parentheses is the gain with RR-BLUP over MLR, and the second one the gain with RR-BLUP over CIM
d In parentheses is the gain in accuracy with BayesA over RR-BLUP
e In parentheses is the gain in accuracy with BayesB over RR-BLUP
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all replicates. Though five models with different a were

used for prediction with MLR in MAS, only the model

which produced the highest level of accuracy was consid-

ered as the true prediction of MLR. A pairwise t test

(a = 0.05) was applied to compare overall accuracies

between various methods.

To determine effects of training sample sizes, random

subsets with proportions of 0.20, 0.40, 0.60, and 0.80 of

each population were selected from each NAM family.

Effects of marker density on GWS, within each NAM

family, were tested by setting a conditional genetic

distance criteria c (for example, c = 5 cM) between two

flanking markers to ensure that each chromosome was

evenly covered by a set of SNPs. Out of 1106 SNPs, sep-

arate sets of polymorphic markers were first extracted for

each of the NAM populations (Table 1). Following, based

on the identified polymorphic markers in each of the NAM

populations, varying numbers of makers were obtained

corresponding to differing values of c without compro-

mising the overall genomic coverage. In detail, the fist

marker on each of the ten chromosomes was always

selected, and its position was recorded as p1. Following, the

Table 3 Prediction accuracy with MLR, CIM, RR-BLUP, BayesA and BayesB for DA at training sample proportion 0.8 and marker density

1.6 cM based on 25 NAM populations

Index Crosses MLR

rBV:P
2a

NQTL CIM

rBV:P
2b

NQTL RR-BLUP

rBV:P
2c

NQTL BayesA

rBV:P
2d

NQTL BayesB NQTL

rBV:P
2e

1 B73 9 B97 0.27 (0.01) 13 0.30 (0.10) 25 0.41 (0.54, 0.39) 816 0.41 (0.00) 816 0.32 (-0.22) 816

2 B73 9 CML103 0.08 (0.05) 29 0.10 (0.20) 15 0.20 (1.48, 1.06) 830 0.21 (0.06) 830 0.11 (-0.44) 830

3 B73 9 CML228 0.34 (0.01) 15 0.39 (0.16) 31 0.52 (0.54, 0.32) 895 0.46 (-0.11) 895 0.46 (-0.11) 895

4 B73 9 CML247 0.41 (0.01) 16 0.46 (0.11) 27 0.57 (0.37, 0.23) 852 0.54 (-0.05) 852 0.56 (-0.01) 852

5 B73 9 CML277 0.46 (0.01) 9 0.45 (-0.03) 22 0.45 (-0.02, 0.01) 834 0.46 (0.02) 834 0.50 (0.10) 834

6 B73 9 CML322 0.31 (0.05) 67 0.37 (0.17) 31 0.53 (0.71, 0.45) 848 0.50 (-0.06) 848 0.39 (-0.27) 848

7 B73 9 CML333 0.30 (0.01) 13 0.36 (0.18) 23 0.49 (0.61, 0.35) 838 0.50 (0.03) 838 0.44 (-0.09) 838

8 B73 9 CML52 0.25 (0.01) 14 0.30 (0.19) 29 0.44 (0.77, 0.48) 853 0.41 (-0.06) 853 0.36 (-0.19) 853

9 B73 9 CML69 0.29 (0.001) 11 0.30 (0.03) 25 0.39 (0.38, 0.30) 849 0.42 (0.06) 849 0.39 (-0.01) 849

10 B73 9 Hp301 0.34 (0.05) 75 0.41 (0.20) 34 0.54 (0.57, 0.31) 806 0.54 (0.00) 806 0.42 (-0.22) 806

11 B73 9 Il14H 0.38 (0.01) 14 0.39 (0.03) 26 0.48 (0.28, 0.25) 846 0.50 (0.03) 846 0.44 (-0.09) 846

12 B73 9 Ki11 0.44 (0.001) 4 0.44 (0.00) 20 0.46 (0.04, 0.04) 836 0.54 (0.16) 836 0.52 (0.13) 836

13 B73 9 Ki3 0.20 (0.01) 11 0.25 (0.23) 43 0.42 (1.12, 0.72) 809 0.38 (-0.11) 809 0.29 (-0.31) 809

14 B73 9 Ky21 0.29 (0.01) 15 0.34 (0.19) 32 0.50 (0.73, 0.46) 820 0.45 (-0.09) 820 0.28 (-0.44) 820

15 B73 9 M162 W 0.38 (0.001) 4 0.32 (-0.16) 23 0.38 (0.00, 0.20) 841 0.42 (0.08) 841 0.40 (0.04) 841

16 B73 9 M37 W 0.36 (0.01) 15 0.40 (0.12) 29 0.55 (0.54, 0.37) 804 0.52 (-0.06) 804 0.47 (-0.14) 804

17 B73 9 Mo18 W 0.40 (0.01) 14 0.42 (0.06) 26 0.53 (0.35, 0.28) 825 0.49 (-0.08) 825 0.53 (-0.01) 825

18 B73 9 MS71 0.19 (0.01) 9 0.21 (0.13) 14 0.25 (0.32, 0.17) 785 0.30 (0.20) 785 0.30 (0.21) 785

19 B73 9 NC350 0.25 (0.01) 11 0.27 (0.09) 19 0.32 (0.31, 0.20) 838 0.33 (0.01) 838 0.29 (-0.11) 838

20 B73 9 NC358 0.34 (0.01) 15 0.38 (0.09) 28 0.51 (0.48, 0.35) 825 0.51 (0.00) 825 0.41 (-0.19) 825

21 B73 9 Oh43 0.22 (0.01) 10 0.25 (0.14) 20 0.29 (0.31, 0.15) 824 0.29 (0.00) 824 0.22 (-0.24) 824

22 B73 9 Oh7B 0.38 (0.01) 12 0.43 (0.12) 23 0.47 (0.22, 0.09) 796 0.43 (-0.07) 796 0.40 (-0.14) 796

23 B73 9 P39 0.26 (0.01) 12 0.29 (0.11) 25 0.49 (0.87, 0.69) 841 0.40 (-0.18) 841 0.33 (-0.32) 841

24 B73 9 Tx303 0.15 (0.01) 8 0.15 (0.00) 18 0.17 (0.12, 0.12) 815 0.20 (0.16) 815 0.16 (-0.07) 815

25 B73 9 Tzi8 0.30 (0.01) 12 0.29 (-0.03) 30 0.38 (0.25, 0.29) 860 0.47 (0.24) 860 0.38 (0.01) 860

Min 0.08 4 0.10 14 0.17 785 0.20 785 0.11 785

Max 0.46 75 0.46 43 0.57 895 0.54 895 0.56 895

Aver 0.30 17 0.33 (0.10) 26 0.43 (0.43, 0.30) 831 0.43 (0.00) 831 0.37 (-0.14) 831

Bold in parentheses indicates the gain with one method over another one is not significant at a = 0.05

NAM nested association mapping, MLR multiple linear regression, CIM composite interval mapping, RR-BLUP ridge regression-best linear unbiased

prediction, DA days to anthesis, Min minimum accuracy of prediction across 25 NAM populations, Max maximum accuracy of prediction across 25 NAM

populations, Aver average of accuracy of prediction across 25 NAM populations, NQTL number of QTL
a In parentheses is the significance level which gave the highest rBV:P

2 in MLR
b In parentheses is the gain in accuracy with CIM over with MLR
c The first value in parentheses is the gain with RR-BLUP over MLR, and the second one the gain with RR-BLUP over CIM
d In parentheses is the gain in accuracy with BayesA over RR-BLUP
e In parentheses is the gain in accuracy with BayesB over RR-BLUP
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markers surrounding the position p2 = p1 ? c were

examined and the second marker was selected which was

closest to p2. This p2 was replaced with the position of the

second marker. This process was repeated until the last

maker on the chromosome was selected and was included

if its genetic distance from the last selected marker was

greater than c. A cross-validation was performed based on

different marker densities of c = 1.6, 5, 10, 20, 30, 40, and

50 cM for each method, NAM population, and trait. All the

identified polymorphic markers were included in the model

at c = 1.6 cM as the mean marker distance of the entire

marker set was *1.6 cM. Note that marker density 1.6 cM

was always used when evaluating the effect of training

sample proportion on accuracy of prediction, and training

sample proportion 0.8 was used when evaluating the effect

of marker density in each of the NAM populations.

The heritability influence on GWS accuracies was tested

by a cross-validation procedure as described below. In each

NAM population, the heritabilities H2 for DS, DA, and ASI

(Table 1) were calculated based on phenotypic data from

four locations over 2 years (Buckler et al. 2009). Overall,

H2 ranged from 0.73 to 0.91 for DS, from 0.70 to 0.92 for

Table 4 Prediction accuracy with MLR, CIM, RR-BLUP, BayesA and BayesB for ASI at training sample proportion 0.8 and marker density

1.6 cM based on 25 NAM populations

Index Crosses MLR

rBV:P
2a

NQTL CIM

rBV:P
2b

NQTL RR-BLUP

rBV:P
2c

NQTL BayesA

rBV:P
2d

NQTL BayesB

rBV:P
2e

NQTL

1 B73 9 B97 0.11 (0.01) 8 0.14 (0.26) 16 0.19 (0.72, 0.36) 816 0.19 (0.01) 816 0.15 (-0.20) 816

2 B73 9 CML103 0.16 (0.01) 8 0.16 (0.00) 19 0.30 (0.86, 0.85) 830 0.31 (0.02) 830 0.26 (-0.14) 830

3 B73 9 CML228 0.16 (0.01) 12 0.19 (0.20) 26 0.30 (0.90, 0.58) 895 0.30 (0.01) 895 0.20 (-0.33) 895

4 B73 9 CML247 0.11 (0.01) 6 0.11 (0.00) 13 0.13 (0.21, 0.22) 852 0.18 (0.35) 852 0.17 (0.27) 852

5 B73 9 CML277 0.19 (0.01) 9 0.16 (-0.11) 19 0.22 (0.20, 0.35) 834 0.27 (0.21) 834 0.20 (-0.10) 834

6 B73 9 CML322 0.12 (0.05) 54 0.15 (0.29) 25 0.31 (1.68, 1.07) 848 0.33 (0.04) 848 0.23 (-0.27) 848

7 B73 9 CML333 0.14 (0.05) 45 0.16 (0.09) 22 0.24 (0.65, 0.52) 838 0.24 (0.00) 838 0.16 (-0.33) 838

8 B73 9 CML52 0.13 (0.01) 9 0.13 (-0.00) 18 0.22 (0.68, 0.76) 853 0.25 (0.14) 853 0.19 (-0.14) 853

9 B73 9 CML69 0.17 (0.05) 40 0.18 (0.02) 19 0.21 (0.23, 0.21) 849 0.22 (0.04) 849 0.19 (-0.10) 849

10 B73 9 Hp301 0.29 (0.01) 8 0.27 (-0.10) 14 0.38 (0.29, 0.43) 806 0.38 (0.00) 806 0.38 (0.00) 806

11 B73 9 Il14H 0.21 (0.01) 8 0.20 (-0.05) 15 0.23 (0.07, 0.12) 846 0.21 (-0.08) 846 0.24 (0.05) 846

12 B73 9 Ki11 0.10 (0.05) 44 0.11 (0.10) 21 0.22 (1.11, 0.92) 836 0.21 (-0.03) 836 0.15 (-0.31) 836

13 B73 9 Ki3 0.11 (0.001) 2 0.12 (0.07) 30 0.19 (0.75, 0.64) 809 0.18 (-0.04) 809 0.15 (-0.21) 809

14 B73 9 Ky21 0.21 (0.01) 9 0.24 (0.17) 16 0.31 (0.49, 0.28) 820 0.31 (0.00) 820 0.27 (-0.13) 820

15 B73 9 M162 W 0.16 (0.001) 4 0.16 (-0.00) 16 0.22 (0.25, 0.37) 841 0.23 (0.08) 841 0.16 (-0.26) 841

16 B73 9 M37 W 0.11 (0.001) 2 0.08 (-0.29) 13 0.15 (0.32, 0.85) 804 0.15 (-0.01) 804 0.15 (-0.01) 804

17 B73 9 Mo18 W 0.17 (0.01) 12 0.22 (0.33) 23 0.27 (0.64, 0.23) 825 0.32 (0.17) 825 0.19 (-0.30) 825

18 B73 9 MS71 0.24 (0.01) 11 0.26 (0.08) 18 0.40 (0.66, 0.53) 785 0.41 (0.01) 785 0.34 (-0.16) 785

19 B73 9 NC350 0.07 (0.01) 6 0.07 (0.00) 12 0.12 (0.71, 0.71) 838 0.12 (0.00) 838 0.15 (0.30) 838

20 B73 9 NC358 0.12 (0.01) 8 0.13 (0.14) 25 0.23 (0.96, 0.72) 825 0.26 (0.12) 825 0.14 (-0.39) 825

21 B73 9 Oh43 0.29 (0.05) 56 0.35 (0.22) 29 0.42 (0.48, 0.21) 824 0.43 (0.02) 824 0.26 (-0.39) 824

22 B73 9 Oh7B 0.14 (0.01) 8 0.16 (0.15) 17 0.23 (0.71, 0.49) 796 0.28 (0.21) 796 0.24 (0.03) 796

23 B73 9 P39 0.13 (0.01) 8 0.15 (0.12) 27 0.27 (0.99, 0.78) 841 0.30 (0.11) 841 0.20 (-0.25) 841

24 B73 9 Tx303 0.13 (0.05) 58 0.18 (0.34) 27 0.32 (1.44, 0.81) 815 0.31 (-0.02) 815 0.18 (-0.44) 815

25 B73 9 Tzi8 0.08 (0.01) 7 0.10 (0.20) 19 0.10 (0.20, 0.00) 860 0.10 (0.00) 860 0.10 (0.00) 860

Min 0.07 2 0.07 12 0.10 785 0.10 785 0.10 785

Max 0.29 58 0.35 30 0.42 895 0.43 895 0.38 895

Aver 0.15 18 0.17 (0.13) 20 0.25 (0.67, 0.47) 831 0.26 (0.04) 831 0.20 (-0.20) 831

Bold in parentheses indicates the gain with one method over another one is not significant at a = 0.05

NAM nested association mapping, MLR multiple linear regression, CIM composite interval mapping, RR-BLUP ridge regression-best linear unbiased

prediction, ASI anthesis-silking interval, Min minimum accuracy of prediction across 25 NAM populations, Max maximum accuracy of prediction across

25 NAM populations, Aver average of accuracy of prediction across 25 NAM populations, NQTL number of QTL
a In parentheses is the significance level which gave the highest rBV:P

2 in MLR
b In parentheses is the gain in accuracy with CIM over with MLR
c The first value in parentheses is the gain with RR-BLUP over MLR, and the second one the gain with RR-BLUP over CIM
d In parentheses is the gain in accuracy with BayesA over RR-BLUP
e In parentheses is the gain in accuracy with BayesB over RR-BLUP
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DA, and 0.58 to 0.81 for ASI. On average, across 25 NAM

populations, DS and DA showed high heritabilities of 0.84

and 0.83, while ASI showed a moderate heritability of

0.68. In order to investigate relationship between H2 and

prediction accuracy, accuracies of predictions were

obtained with training sample proportion 0.80 and marker

density 1.6 cM from each NAM population regardless of

traits of interest.

Results

In the current study, we first compared the accuracy of

prediction with MLR, CIM, RR-BLUP, BayesA, and Ba-

yesB methods for traits DS (Table 2), DA (Table 3), and

ASI (Table 4) at training sample proportion 0.8 and marker

density 1.6 cM. First, we compared two control methods

MLR and CIM in order to select an appropriate control in

MAS. Overall, CIM gave higher prediction accuracies than

MLR in 68, 80, and 64% of NAM populations for DS, DA,

and ASI. On average, across all populations, the prediction

accuracy with CIM was 0.32 for DS, 0.33 for DA, and 0.17

for ASI, showing 7, 10, and 13% increases in precision

over MLR for these three traits, respectively. As a result of

this, the increases in accuracy with GWS over MAS (more

detail discussed in the next section) were over-estimated

when using MLR, compared to the results from CIM. In

order to compensate for this issue, the CIM strategy was

used as a control method in MAS in the current study.

Next, we evaluated the performance of GWS via RR-

BLUP over MAS with the CIM method for DS (Table 2),

DA (Table 3), and ASI (Table 4). We found that the

accuracy of prediction with RR-BLUP was greater than

that of traditional CIM. The accuracy with RR-BLUP

ranged from 0.26 to 0.57 for DS, 0.17 to 0.57 for DA, and

0.10 to 0.42 for ASI, while with CIM ranged from 0.09 to

0.46 for DS, 0.10 to 0.46 for DA, and 0.07 to 0.35 for ASI.

The gain in accuracy with RR-BLUP over CIM ranged

from 0.05 to 1.98 for DS, 0.01 to 1.06 for DA, and 0.00 to

1.07 for ASI. We also found that these gains were statis-

tically significant at a = 0.05 in most cases. On average,

across all the populations, the accuracy with RR-BLUP

was 0.43, 0.43, and 0.25 for DS, DA, and ASI, 34, 30, and

47% higher than that with CIM.

Finally, RR-BLUP was compared with two Bayesian

methods BayesA and BayesB to determine the favor-

able method for estimating marker effects in GWS

(Tables 2, 3, 4). It was concluded that BayesA provided

Fig. 1 Prediction accuracy

using RR-BLUP and CIM with

different proportions of training

samples for DS at marker

density 1.6 cM based on 25

NAM populations. RR-BLUP
ridge regression-best linear

unbiased prediction, CIM
composite interval mapping, DS
days to silking, NAM nested

association mapping
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better accuracies over BayesB and both gave estimates

lower than or comparable to RR-BLUP. For example, for

the DS trait, out of the 25 NAM populations, 10 popula-

tions showed significant decreases in prediction with Ba-

yesA over RR-BLUP. The decrease ranged from -0.07 to

-0.20. Nine populations showed no differences while only

6 populations showing increases ranging from 0.04 to 0.37.

Similar trends were seen for BayesB but to an even lower

degree of gain over RR-BLUP. On average, across 25

NAM populations, gains with BayesA over RR-BLUP

were -0.03 for DS, 0.00 for DA, and 0.05 for ASI, while

with BayesB over RR-BLUP was -0.16, -0.14, and -0.20

for three traits DS, DA, and ASI, respectively.

Figures 1, 2, 3 shows the prediction accuracy with RR-

BLUP and CIM with four levels of training sample pro-

portions 0.2, 0.4, 0.6, and 0.8 at marker density c = 1.6 cM

for DS, DA, and ASI, respectively. We found that the

precision increased with the proportion of training sample

for both RR-BLUP and CIM. This was due to improved

estimations of marker effects and power of QTL detection.

These accuracies gradually reached a plateau. Training

sample proportion corresponding to a peak of 0.4 for

RR-BLUP compared to 0.6 for CIM. This suggested that

RR-BLUP reached the plateau faster than CIM. In general,

the RR-BLUP method was relatively insensitive to training

sample proportion compared to CIM. When training sam-

ple proportion decreased, accuracies with CIM declined

faster than that with RR-BLUP. As a result, gains in pre-

diction with RR-BLUP over CIM improved at the low level

of training sample proportion.

Prediction estimates with RR-BLUP and CIM at dif-

ferent marker density levels were also examined for DS

(Fig. 4), DA (Fig. 5), and ASI (Fig. 6) based on training

sample proportion of 0.8. Marker densities of 1.6, 5, 10,

20, 30, 40, and 50 cM were used corresponding to dif-

ferent numbers of polymorphic markers selected in each

NAM population via methods described in the previous

section.

As expected, prediction accuracies improved with mar-

ker density due to enlarged linkage disequilibrium (LD)

between QTL and markers. However, we found that these

improvements tended to be zero when marker density

exceeded a threshold of 10 cM. The precision remained

unchanged with increases of marker density for both RR-

BLUP and CIM at this point. This suggested that the

density selected based on an interval size of 10 cM was

sufficient in the NAM populations to capture LD between

QTL and markers.

Fig. 2 Prediction accuracy

using RR-BLUP and CIM with

different proportions of training

samples for DA at marker

density 1.6 cM based on 25

NAM populations. RR-BLUP
ridge regression-best linear

unbiased prediction, CIM
composite interval mapping, DA
days to anthesis, NAM nested

association mapping
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Both RR-BLUP and CIM methods decreased in accu-

racy with decreasing marker density with CIM decreasing

more rapidly than RR-BLUP when maker density levels

were lower than 10 cM. Consequently, gains in prediction

with RR-BLUP over CIM improved with the reduction of

marker density. In some cases, such as population 1, 2, 6,

19, 21, 24 in Fig. 4, population 2, 19, and 24 in Fig. 5, and

population 3, 8, 9, 13, 15, 20, 24, and 25 in Fig. 6, the

prediction with CIM was close to zero with low marker

density due to difficulties in QTL detection caused by low

LD between QTL and markers. In contrast, RR-BLUP still

gave 0.03 to 0.17 accuracies in these situations, though the

accuracies were not as large as that obtained with high

marker density.

Although prediction accuracies decreased with marker

densities at the range of 1.6 cM to 20 cM, some unex-

pected fluctuations occurred at the range of 20 cM to

50 cM (Figs. 4, 5, 6). In some situation prediction accuracy

at lower marker density was greater than that of higher

marker density. For example, in the NAM 1 population

(Fig. 4), the prediction accuracy with RR-BLUP was 0.29

at c = 40 cM compared to 0.26 at c = 30 cM. The num-

bers of markers in the GWS model at these two levels were

52 at 30 cM and 38 at 40 cM, overall very minor differ-

ences in the whole genome marker coverage. In addition,

when marker densities are at these low levels, lower den-

sities may actually capture more QTL with great effects

than high marker density levels by chance, as genome-wide

coverage is very minimal at the levels of c = 30 and

c = 40.

Combined effects of marker density and training sample

proportion based on NAM Population 1 (B73 9 B97) for

the trait DS were calculated (Fig. 7). The prediction ability

increased with both marker density and training sample

proportion. This gain with RR-BLUP over CIM increased

with reductions of these two factors. These observations

were actually consistent to results obtained from a separate

analysis as shown in Figs. 1, 2, 3, 4, 5, 6. Influences of

training sample proportion on accuracy with RR-BLUP and

CIM were greater than that of marker density. Therefore,

predictions were relatively insensitive to marker density

compared to training sample proportion. Similar trends

were seen for other populations and traits (data not shown).

Relationships between heritability H2 and prediction

precision for RR-BLUP and CIM at different levels of

training sample proportions (0.20, 0.40, 0.60, and 0.80)

were tested at marker density c = 1.6 cM (Fig. 8). The

prediction accuracy increased with H2 for both RR-BLUP

and CIM. One exception was CIM with a training sample

proportion of 0.20. Precisions with CIM remained low and

Fig. 3 Prediction accuracy

using RR-BLUP and CIM with

different proportions of training

samples for ASI at marker

density 1.6 cM based on 25

NAM populations. RR-BLUP
ridge regression-best linear

unbiased prediction, CIM
composite interval mapping,

ASI anthesis-silking interval,

NAM nested association

mapping
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unchanged due to a poor power of QTL detection at this

sample size. This suggested that H2 had little effect on

QTL detection with CIM when sample sizes were extre-

mely low. More importantly, gains in prediction with RR-

BLUP over CIM improved with the decrease of H2 at

different levels of training sample proportions and gains

were statistically significant in most cases as shown in

Tables 2, 3, 4. On average, for the case with training

sample proportion 0.80, the value of RR-BLUP over CIM

across the predictions with moderate H2 (0.60–0.70) was

12% higher than that obtained from predictions with high

H2 (0.80–0.90). Similar trends were also noted at other

levels of training sample proportion when fluctuations

caused by training sample proportion were disregarded.

Discussion

While MLR has been widely used as a control method in

simulated and empirical studies, it tends to bias gains in

accuracy with GWS over MAS in bi-parental plant popu-

lations. The advantage of MLR lies in its simplicity and

fast computation. Both stepwise regression for identifying

QTL markers and multiple regression for estimating QTL

effects are easily calculated. However, MLR fails to

localize a QTL that lies between two flanking markers. In

contrast, CIM gives more accurate estimations of QTL

positions and effects by localizing a QTL at any position

between two flanking markers (Jansen 1993; Zeng 1993,

1994). The CIM method results in higher prediction

accuracies than MLR, which was demonstrated in the

current study. As a result, advantages of GWS over MAS

may be overestimated when MLR, rather than CIM, is used

as a control for comparison purposes. The CIM has also

been widely utilized in bi-parental QTL mapping and

marker-assisted breeding projects (Utz et al. 2000). Thus,

we suggest that CIM may be used as an appropriate control

method in order to assess the performance of GWS in plant

bi-parental populations.

Gains in precision with GWS over MAS may be

affected by three key factors: training sample proportion,

marker density and heritability. It has been shown that in

order to maximize effectiveness of MAS, QTL positions

and their respective magnitude must be estimated with a

high precision (Utz et al. 2000). Often it is difficult to

satisfy these conditions due to limited sample size, low

heritability and low marker density in true breeding pop-

ulations. This phenomenon causes low detection power,

Fig. 4 Prediction accuracy

using RR-BLUP and CIM with

different marker density levels

for DS at training sample

proportion 0.8 based on 25

NAM populations. RR-BLUP
ridge regression-best linear

unbiased prediction, CIM
composite interval mapping, DS
days to silking, NAM nested

association mapping
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biased estimates of positions and magnitudes of QTL

(Beavis 1994; Utz et al. 2000). In contrast, GWS is rela-

tively insensitive to these factors. Gains in precision with

GWS over MAS improve with decreases in these factors

mentioned above. The GWS method tends to capture the

genetic variation of minor QTL that are missed by MAS

using several markers surrounding these QTL. Also, GWS

shrinks overestimated QTL effects towards its true value

by using RR-BLUP or other Bayesian approaches (Xu

2003).

The influence of marker density is lower than that of

training sample proportions for GWS compared to MAS.

Similar to Habier et al. (2007) simulation study, the RR-

BLUP strategy tends to utilize genetic relationships

between RILs in a population for prediction. Thus, reduc-

ing or increasing marker density does not necessarily

influence genetic relationships between RILs in a NAM

population. Another possible explanation is the GWS

method allows multiple markers to detect a single QTL,

while a single or flanking marker represents the QTL effect

with MAS. Therefore, decreases of prediction accuracy

with marker density in MAS are greater than that of GWS.

When marker number reaches an area of high density, the

prediction accuracy will not further improve. Marker

densities corresponding to a mean genetic distance of

10 cM between markers is sufficient to capture LD

between QTL and markers for GWS in bi-parental plant

populations based on results from the current study.

The results in the paper show that RR-BLUP is a pre-

ferred method for estimating marker effects in GWS,

providing accuracy of prediction higher than or comparable

to BayesA and BayesB. This finding was consistent to

results reported by Lorenzana and Bernardo (2009),

although they compared RR-BLUP with an empirical

Bayesian method, which was actually an extension of

BayesA (Xu 2003, 2007). However, it has recently been

reported that BayesB provided at least 60% higher accu-

racy than RR-BLUP based on a human simulation study

(Meuwissen and Goddard 2010). Since our results were

based on traits controlled by many QTL with small genetic

effects, gains in accuracy with BayesB over RR-BLUP

would not be expected in our study due to the polygenic

nature for these traits (Buckler et al. 2009). It is unexpected

that BayesB was worse than BayesA in our study. One

explanation is that BayesB was performed using an ICE-

based algorithm, rather than the original MCMC-based

BayesB for the ease of intensive computations. The ICE-

based BayesB has been found to produce slightly lower

accuracies than MCMC-based BayesB (Meuwiseen et al.

2009). Another cause may be due to the difference between

Fig. 5 Prediction accuracy

using RR-BLUP and CIM with

different marker density levels

for DA at training sample

proportion 0.8 based on 25

NAM populations. RR-BLUP
ridge regression-best linear

unbiased prediction, CIM
composite interval mapping, DA
days to anthesis, NAM nested

association mapping
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simulated data and real data used in this study. The con-

clusion that BayesB outperforms RR-BLUP is based only

on simulation studies (Meuwissen et al. 2001; Meuwissen

and Goddard 2010; Habier et al. 2007) with no empirical data

supporting their respective conclusions. Thus, it is reasonable

to infer that BayesB may benefit from the modeled data

compared to RR-BLUP while RR-BLUP is superior when

analyzing various types of real data from complex traits.

Additive genetic models only have been considered in

this study and epistasis has been omitted for simplicity.

Theoretically, including epistasis in GWS may increase

prediction accuracy if epistasis is important and it can be

modeled precisely (Lorenzana and Bernardo 2009). How-

ever, in practice, both simulations and empirical studies

showed no advantage or even poor prediction ability by

incorporating QTL pairwise epistatic effects into a GWS

model (Lee et al. 2008; Lorenzana and Bernardo 2009;

Piyasatian et al. 2007). This may be caused by too much

noise being integrated into the model when combining

main and epistatic effects of QTL. Still another explanation

is the need for large sample sizes to utilize the genetic

variation from epistasis as indicated by Lorenzana and

Bernardo (2009). Additional studies are required to vali-

date or disprove these theories. In the current study, since

few genetic interactions were detected by the original QTL

mapping study by Buckler et al. (2009), overall impacts of

epistasis may be limited or even negligible on the con-

clusions obtained from this study.

Fig. 6 Prediction accuracy

using RR-BLUP and CIM with

different marker density levels

for ASI at training sample

proportion 0.8 based on 25

NAM populations. RR-BLUP
ridge regression-best linear

unbiased prediction, CIM
composite interval mapping,

ASI anthesis-silking interval,

NAM nested association

mapping

Fig. 7 A 3D plot of prediction accuracy with different proportions of

training samples and markers density levels for DS based on the NAM

population derived from B73 9 B97. RR-BLUP ridge regression-best

linear unbiased prediction, CIM composite interval mapping, DS days

to silking, NAM nested association mapping
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In practice, application of GWS in breeding may be

determined by the objectives, resources of breeding pro-

grams, and the genetic architecture of traits. If the objective

is focused on manipulating large-effect QTL such as plant

diseases, MAS may be sufficient to pyramid favorable

alleles by a successive backcrossing strategy (Jannink et al.

2010). In comparison to GWS, MAS for a few major QTL

markers would be cheaper and a more efficient selection

strategy. However, if the trait is controlled by many small-

effect QTL, such as yield, it is difficult to identify the major

effect QTL. The GWS strategy would bypass this problem

by incorporating all major and minor QTL in a single model

but genotyping costs increase. In addition, GWS can grad-

ually improve a trait by incorporating multiple generations

of recombination (Bernardo and Yu 2007).

Finally, it is important to note that NAM populations

were developed by crossing 25 diverse exotic lines with a

common elite line B73 in order to dissect the genetic

architecture of complex traits in maize. More genetic var-

iation and QTL exist in these populations compared to

‘‘traditional’’ corn breeding populations that are elite by

elite parent inbreds, raising concerns of the application of

the current study to plant breeding. However, both NAM

and breeding populations are bi-parental-based, following a

similar genetic recombination process by continued selfing

to generate a population. In addition, similar prediction

accuracies of GWS have been reported by Lorenzana and

Bernardo (2009) using four, non-exotic maize populations.

Therefore, although the number of QTL segregating and

exotic type alleles in these NAM populations significantly

differs from a commercial plant breeding program, our

conclusions should not significantly differ.

Our conclusions were mainly based on maize flowering

time traits in 25 NAM populations. The study showed that

Fig. 8 Prediction accuracy

using RR-BLUP and CIM with

25 NAM populations with

different heritabilities for DS,

DA and ASI based on four

levels (0.20, 0.40, 0.60, 0.80) of

proportions of training sample

at marker density 1.6 cM. RR-
BLUP ridge regression-best

linear unbiased prediction, CIM
composite interval mapping,

NAM nested association

mapping, DS days to silking,

DA days to anthesis, ASI
anthesis-silking interval
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the GWS strategy outperformed MAS via the CIM-method

based on bi-parental segregation populations. However, the

advantages GWS identified in this study should not be

expected for any trait in any crop. In order to further val-

idate the efficiency of GWS and get a broader under-

standing, further investigations are needed with additional

traits and crops. Also, due to the complex genetic archi-

tecture of traits in breeding programs such as yield, one

cannot expect one method will always be superior.

Therefore, MAS and GWS may be used in complementa-

rily in breeding programs or applied at different stages of

cultivar development.
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